Skip to content

QualityMonitor

laktory.models.resources.databricks.QualityMonitor ¤

Bases: BaseModel, PulumiResource, TerraformResource

Databricks Quality Monitor

Examples:

import laktory as lk

qm = lk.models.resources.databricks.QualityMonitor(
    assets_dir="/.laktory/qualitymonitors",
    output_schema_name="dev.monitoring",
    table_name="dev.slv_stock_prices",
    snapshot={},
)
PARAMETER DESCRIPTION
resource_name_

Name of the resource in the context of infrastructure as code. If None, default_resource_name will be used instead.

TYPE: str | VariableType DEFAULT: None

options

Resources options specifications

TYPE: ResourceOptions | VariableType DEFAULT: ResourceOptions(variables={}, is_enabled=True, depends_on=[], provider=None, ignore_changes=None, aliases=None, delete_before_replace=True, import_=None, parent=None, replace_on_changes=None, moved_from=None)

lookup_existing

Lookup resource instead of creating a new one.

TYPE: ResourceLookup | VariableType DEFAULT: None

variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

assets_dir

The directory to store the monitoring assets (Eg. Dashboard and Metric Tables)

TYPE: str | VariableType

output_schema_name_

Schema where output metric tables are created. Its of the format {catalog}.{schema}.

TYPE: str | VariableType DEFAULT: None

table_name_

The full name of the table to attach the monitor too. Its of the format {catalog}.{schema}.{tableName}

TYPE: str | VariableType DEFAULT: None

baseline_table_name

Name of the baseline table from which drift metrics are computed from.Columns in the monitored table should also be present in the baseline table.

TYPE: str | VariableType DEFAULT: None

custom_metrics

Custom metrics to compute on the monitored table. These can be aggregate metrics, derived metrics (from already computed aggregate metrics), or drift metrics (comparing metrics across time windows).

TYPE: list[Union[QualityMonitorCustomMetric, VariableType]] | VariableType DEFAULT: None

data_classification_config

The data classification config for the monitor

TYPE: QualityMonitorDataClassificationConfig | VariableType DEFAULT: None

inference_log

Configuration for the inference log monitor

TYPE: QualityMonitorInferenceLog | VariableType DEFAULT: None

latest_monitor_failure_msg

TYPE: str | VariableType DEFAULT: None

monitor_id

ID of this monitor is the same as the full table name of the format {catalog}.{schema_name}.{table_name}

TYPE: str | VariableType DEFAULT: None

notifications

The notification settings for the monitor.

TYPE: QualityMonitorNotifications | VariableType DEFAULT: None

schedule

The schedule for automatically updating and refreshing metric tables.

TYPE: QualityMonitorSchedule | None | VariableType DEFAULT: None

skip_builtin_dashboard

Whether to skip creating a default dashboard summarizing data quality metrics. (Can't be updated after creation).

TYPE: bool | VariableType DEFAULT: None

slicing_exprs

List of column expressions to slice data with for targeted analysis. The data is grouped by each expression independently, resulting in a separate slice for each predicate and its complements. For high-cardinality columns, only the top 100 unique values by frequency will generate slices.

TYPE: list[Union[str, VariableType]] | VariableType DEFAULT: None

snapshot

Configuration for monitoring snapshot tables.

TYPE: QualityMonitorSnapshot | VariableType DEFAULT: None

time_series

Configuration for monitoring timeseries tables.

TYPE: QualityMonitorTimeSeries | VariableType DEFAULT: None

warehouse_id

Optional argument to specify the warehouse for dashboard creation. If not specified, the first running warehouse will be used. (Can't be updated after creation)

TYPE: str | VariableType DEFAULT: None

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

ATTRIBUTE DESCRIPTION
additional_core_resources

TYPE: list[PulumiResource]

core_resources

List of core resources to be deployed with this laktory model:

pulumi_properties

Resources properties formatted for pulumi:

TYPE: dict

pulumi_renames

Map of fields to rename when dumping model to pulumi

TYPE: dict[str, str]

resource_key

Resource key used to build default resource name. Equivalent to

TYPE: str

resource_type_id

Resource type id used to build default resource name. Equivalent to

TYPE: str

self_as_core_resources

Flag set to True if self must be included in core resources

table_name

Remove backticks from table name as they are not accepted by the API

TYPE: str | None

terraform_properties

Resources properties formatted for terraform:

TYPE: dict

terraform_renames

Map of fields to rename when dumping model to terraform

TYPE: dict[str, str]

additional_core_resources property ¤

core_resources property ¤

List of core resources to be deployed with this laktory model: - class instance (self)

pulumi_properties property ¤

Resources properties formatted for pulumi:

  • Serialization (model dump)
  • Removal of excludes defined in self.pulumi_excludes
  • Renaming of keys according to self.pulumi_renames
  • Injection of variables
RETURNS DESCRIPTION
dict

Pulumi-safe model dump

pulumi_renames property ¤

Map of fields to rename when dumping model to pulumi

resource_key property ¤

Resource key used to build default resource name. Equivalent to name properties if available. Otherwise, empty string.

resource_type_id property ¤

Resource type id used to build default resource name. Equivalent to class name converted to kebab case. e.g.: SecretScope -> secret-scope

self_as_core_resources property ¤

Flag set to True if self must be included in core resources

table_name property ¤

Remove backticks from table name as they are not accepted by the API

terraform_properties property ¤

Resources properties formatted for terraform:

  • Serialization (model dump)
  • Removal of excludes defined in self.terraform_excludes
  • Renaming of keys according to self.terraform_renames
  • Injection of variables
RETURNS DESCRIPTION
dict

Terraform-safe model dump

terraform_renames property ¤

Map of fields to rename when dumping model to terraform

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorSchedule ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

quartz_cron_expression

string expression that determines when to run the monitor. See Quartz documentation for examples.

TYPE: list[Union[str, VariableType]] | VariableType

timezone_id

string with timezone id (e.g., PST) in which to evaluate the Quartz expression.

TYPE: str | VariableType

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorSnapshot ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorTimeSeries ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

granularities

List of granularities to use when aggregating data into time windows based on their timestamp.

TYPE: list[Union[str, VariableType]] | VariableType

timestamp_col

Column of the timestamp of predictions.

TYPE: str | VariableType

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorNotifications ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

on_failure

Who to send notifications to on monitor failure.

TYPE: QualityMonitorNotificationsOnFailure | VariableType DEFAULT: None

on_new_classification_tag_detected

Who to send notifications to when new data classification tags are detected.

TYPE: QualityMonitorNotificationsOnNewClassificationTagDetected | VariableType DEFAULT: None

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorNotificationsOnNewClassificationTagDetected ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

email_addresses

TYPE: list[Union[str, VariableType]] | VariableType

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorNotificationsOnFailure ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

email_addresses

TYPE: list[Union[str, VariableType]] | VariableType

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorInferenceLog ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

granularities

List of granularities to use when aggregating data into time windows based on their timestamp.

TYPE: list[Union[str, VariableType]] | VariableType

model_id_col

Column of the model id or version

TYPE: str | VariableType

prediction_col

Column of the model prediction

TYPE: str | VariableType

problem_type

Problem type the model aims to solve. Either PROBLEM_TYPE_CLASSIFICATION or PROBLEM_TYPE_REGRESSION

TYPE: str | VariableType

timestamp_col

Column of the timestamp of predictions

TYPE: str | VariableType

label_col

Column of the model label

TYPE: str | VariableType DEFAULT: None

prediction_proba_col

Column of the model prediction probabilities

TYPE: str | VariableType DEFAULT: None

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorDataClassificationConfig ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

enabled

TYPE: bool | VariableType

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state

laktory.models.resources.databricks.qualitymonitor.QualityMonitorCustomMetric ¤

Bases: BaseModel

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

definition

Create metric definition

TYPE: str | VariableType

input_columns

Columns on the monitored table to apply the custom metrics to.

TYPE: list[Union[str, VariableType]] | VariableType

name

Name of the custom metric.

TYPE: str | VariableType

output_data_type

The output type of the custom metric.

TYPE: str | VariableType

type

The type of the custom metric.

TYPE: str | VariableType

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
347
348
349
350
351
352
353
354
355
356
357
358
359
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state