Skip to content

Databricks Pipeline

laktory.models.pipeline.orchestrators.databrickspipelineorchestrator.DatabricksPipelineOrchestrator ¤

Bases: Pipeline, PipelineChild

Databricks Pipeline used as an orchestrator to execute a Laktory pipeline.

DLT orchestrator does not support pipeline nodes with views (as opposed to materialized tables). Also, it does not support writing to multiple schemas within the same pipeline.

Selecting this orchestrator requires to add the supporting notebook to the stack.

References
PARAMETER DESCRIPTION
dataframe_backend_

Type of DataFrame backend

TYPE: DataFrameBackends | VariableType DEFAULT: None

dataframe_api_

DataFrame API to use in DataFrame Transformer nodes. Either 'NATIVE' (backend-specific) or 'NARWHALS' (backend-agnostic).

TYPE: Literal['NARWHALS', 'NATIVE'] | VariableType DEFAULT: None

resource_name_

Name of the resource in the context of infrastructure as code. If None, default_resource_name will be used instead.

TYPE: str | VariableType DEFAULT: None

options

Resources options specifications

TYPE: ResourceOptions | VariableType DEFAULT: ResourceOptions(variables={}, is_enabled=True, depends_on=[], provider=None, ignore_changes=None, aliases=None, delete_before_replace=True, import_=None, parent=None, replace_on_changes=None, moved_from=None)

lookup_existing

Lookup resource instead of creating a new one.

TYPE: ResourceLookup | VariableType DEFAULT: None

variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

access_controls

Pipeline access controls

TYPE: list[Union[AccessControl, VariableType]] | VariableType DEFAULT: []

allow_duplicate_names

If False, deployment will fail if name conflicts with that of another pipeline.

TYPE: bool | VariableType DEFAULT: None

budget_policy_id

optional string specifying ID of the budget policy for this DLT pipeline.

TYPE: str | VariableType DEFAULT: None

catalog

Name of the unity catalog storing the pipeline tables

TYPE: str | None | VariableType DEFAULT: None

cause

TYPE: str | VariableType DEFAULT: None

channel

Name of the release channel for Spark version used by DLT pipeline.

TYPE: Literal['CURRENT', 'PREVIEW'] | VariableType DEFAULT: 'PREVIEW'

cluster_id

TYPE: str | VariableType DEFAULT: None

clusters

Clusters to run the pipeline. If none is specified, pipelines will automatically select a default cluster configuration for the pipeline.

TYPE: list[Union[PipelineCluster, VariableType]] | VariableType DEFAULT: []

creator_user_name

TYPE: str | VariableType DEFAULT: None

configuration

List of values to apply to the entire pipeline. Elements must be formatted as key:value pairs

TYPE: dict[Union[str, VariableType], Union[str, VariableType]] | VariableType DEFAULT: {}

continuous

If True, the pipeline is run continuously.

TYPE: bool | VariableType DEFAULT: None

deployment

Deployment type of this pipeline.

TYPE: PipelineDeployment | VariableType DEFAULT: None

development

If True the pipeline is run in development mode

TYPE: bool | VariableType DEFAULT: None

edition

Name of the product edition

TYPE: Literal['CORE', 'PRO', 'ADVANCED'] | VariableType DEFAULT: None

event_log

An optional block specifying a table where DLT Event Log will be stored.

TYPE: PipelineEventLog | VariableType DEFAULT: None

expected_last_modified

TYPE: int | VariableType DEFAULT: None

filters

Filters on which Pipeline packages to include in the deployed graph.

TYPE: PipelineFilters | VariableType DEFAULT: None

gateway_definition

The definition of a gateway pipeline to support CDC.

TYPE: PipelineGatewayDefinition | VariableType DEFAULT: None

health

TYPE: str | VariableType DEFAULT: None

last_modified

TYPE: int | VariableType DEFAULT: None

latest_updates

TYPE: list[Union[PipelineLatestUpdate, VariableType]] | VariableType DEFAULT: None

libraries

Specifies pipeline code (notebooks) and required artifacts.

TYPE: list[Union[PipelineLibrary, VariableType]] | VariableType DEFAULT: None

name

Pipeline name

TYPE: str | VariableType

name_prefix

Prefix added to the DLT pipeline name

TYPE: str | VariableType DEFAULT: None

name_suffix

Suffix added to the DLT pipeline name

TYPE: str | VariableType DEFAULT: None

notifications

Notifications specifications

TYPE: list[Union[PipelineNotifications, VariableType]] | VariableType DEFAULT: []

photon

If True, Photon engine enabled.

TYPE: bool | VariableType DEFAULT: None

restart_window

TYPE: PipelineRestartWindow | VariableType DEFAULT: None

root_path

An optional string specifying the root path for this pipeline. This is used as the root directory when editing the pipeline in the Databricks user interface and it is added to sys.path when executing Python sources during pipeline execution.

TYPE: str | VariableType DEFAULT: None

run_as

TYPE: PipelineRunAs | VariableType DEFAULT: None

run_as_user_name

TYPE: str | VariableType DEFAULT: None

schema_

The default schema (database) where tables are read from or published to. The presence of this attribute implies that the pipeline is in direct publishing mode.

TYPE: str | VariableType DEFAULT: None

serverless

If True, serverless is enabled

TYPE: bool | VariableType DEFAULT: None

state

TYPE: str | VariableType DEFAULT: None

storage

A location on DBFS or cloud storage where output data and metadata required for pipeline execution are stored. By default, tables are stored in a subdirectory of this location. Change of this parameter forces recreation of the pipeline. (Conflicts with catalog).

TYPE: str | VariableType DEFAULT: None

tags

A map of tags associated with the pipeline. These are forwarded to the cluster as cluster tags, and are therefore subject to the same limitations. A maximum of 25 tags can be added to the pipeline.

TYPE: dict[Union[str, VariableType], Union[str, VariableType]] | VariableType DEFAULT: None

target

The name of a database (in either the Hive metastore or in a UC catalog) for persisting pipeline output data. Configuring the target setting allows you to view and query the pipeline output data from the Databricks UI.

TYPE: str | VariableType DEFAULT: None

trigger

TYPE: PipelineTrigger | VariableType DEFAULT: None

url

URL of the DLT pipeline on the given workspace.

TYPE: str | VariableType DEFAULT: None

type

Type of orchestrator

TYPE: Literal['DATABRICKS_PIPELINE'] | VariableType DEFAULT: 'DATABRICKS_PIPELINE'

config_file

Pipeline configuration (json) file deployed to the workspace and used by the job to read and execute the pipeline.

TYPE: PipelineConfigWorkspaceFile | VariableType

METHOD DESCRIPTION
inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

ATTRIBUTE DESCRIPTION
additional_core_resources
  • configuration workspace file

TYPE: list[PulumiResource]

core_resources

List of core resources to be deployed with this laktory model:

resource_key

Resource key used to build default resource name. Equivalent to

TYPE: str

self_as_core_resources

Flag set to True if self must be included in core resources

additional_core_resources property ¤

  • configuration workspace file
  • configuration workspace file permissions

core_resources property ¤

List of core resources to be deployed with this laktory model: - class instance (self)

resource_key property ¤

Resource key used to build default resource name. Equivalent to name properties if available. Otherwise, empty string.

self_as_core_resources property ¤

Flag set to True if self must be included in core resources

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
341
342
343
344
345
346
347
348
349
350
351
352
353
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state