Skip to content

DataSinkMergeCDCOptions

laktory.models.DataSinkMergeCDCOptions ¤

Bases: BaseModel

Options for merging a change data capture (CDC).

They are also used to build the target using apply_changes method when using Databricks DLT.

PARAMETER DESCRIPTION
variables

Dict of variables to be injected in the model at runtime

TYPE: dict[str, Any] DEFAULT: {}

delete_where

Specifies when a CDC event should be treated as a DELETE rather than an upsert.

TYPE: str | VariableType DEFAULT: None

end_at_column_name

When using SCD type 2, name of the column storing the end time (or sequencing index) during which a row is active. This attribute is not used when using Databricks DLT which does not allow column rename.

TYPE: str | VariableType DEFAULT: '__end_at'

exclude_columns

A subset of columns to exclude in the target table.

TYPE: list[Union[str, VariableType]] | VariableType DEFAULT: None

ignore_null_updates

Allow ingesting updates containing a subset of the target columns. When a CDC event matches an existing row and ignore_null_updates is True, columns with a null will retain their existing values in the target. This also applies to nested columns with a value of null. When ignore_null_updates is False, existing values will be overwritten with null values.

TYPE: bool | VariableType DEFAULT: False

include_columns

A subset of columns to include in the target table. Use include_columns to specify the complete list of columns to include.

TYPE: list[Union[str, VariableType]] | VariableType DEFAULT: None

order_by

The column name specifying the logical order of CDC events in the source data. Used to handle change events that arrive out of order.

TYPE: str | VariableType DEFAULT: None

primary_keys

The column or combination of columns that uniquely identify a row in the source data. This is used to identify which CDC events apply to specific records in the target table.

TYPE: list[Union[str, VariableType]] | VariableType DEFAULT: None

scd_type

Whether to store records as SCD type 1 or SCD type 2.

TYPE: Literal[1, 2] | VariableType DEFAULT: 1

start_at_column_name

When using SCD type 2, name of the column storing the start time (or sequencing index) during which a row is active. This attribute is not used when using Databricks DLT which does not allow column rename.

TYPE: str | VariableType DEFAULT: '__start_at'

Examples:

from laktory import models

df = spark.createDataFrame(
    [
        {"id": 1, "value": 3.0},
        {"id": 2, "value": 2.3},
        {"id": 3, "value": 7.7},
    ]
)

sink = models.FileDataSink(
    path="./my_table/",
    format="DELTA",
    mode="MERGE",
    merge_cdc_options={
        "scd_type": 1,
        "primary_keys": ["id"],
    },
)
# sink.write(df)
References
METHOD DESCRIPTION
execute

Merge source into target delta from sink

inject_vars

Inject model variables values into a model attributes.

inject_vars_into_dump

Inject model variables values into a model dump.

model_validate_json_file

Load model from json file object

model_validate_yaml

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports

push_vars

Push variable values to all child recursively

validate_assignment_disabled

Updating a model attribute inside a model validator when validate_assignment

execute(source) ¤

Merge source into target delta from sink

PARAMETER DESCRIPTION
source

Source DataFrame to merge into target (sink).

TYPE: AnyFrame

Source code in laktory/models/datasinks/mergecdcoptions.py
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
def execute(self, source: AnyFrame):
    """
    Merge source into target delta from sink

    Parameters
    ----------
    source:
        Source DataFrame to merge into target (sink).
    """

    dataframe_backend = DataFrameBackends.from_nw_implementation(
        source.implementation
    )
    if dataframe_backend not in SUPPORTED_BACKENDS:
        raise NotImplementedError(
            f"DataFrame provided is of {dataframe_backend} backend, which is not currently implemented for merge operations."
        )

    source = source.to_native()

    from delta.tables import DeltaTable

    self._source_schema = source.schema
    spark = source.sparkSession

    if self.target_path:
        if not DeltaTable.isDeltaTable(spark, self.target_path):
            self._init_target(source)
    else:
        try:
            spark.catalog.getTable(self.target_name)
        except Exception:
            self._init_target(source)

    if source.isStreaming:
        if self.sink is None:
            raise ValueError("Sink value required to fetch checkpoint location.")

        if self.sink and self.sink._checkpoint_path is None:
            raise ValueError(
                f"Checkpoint location not specified for sink '{self.sink}'"
            )

        query = (
            source.writeStream.foreachBatch(
                lambda batch_df, batch_id: self._execute(source=batch_df)
            )
            .trigger(availableNow=True)
            .options(
                checkpointLocation=self.sink._checkpoint_path,
            )
            .start()
        )
        query.awaitTermination()

    else:
        self._execute(source=source)

inject_vars(inplace=False, vars=None) ¤

Inject model variables values into a model attributes.

PARAMETER DESCRIPTION
inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict DEFAULT: None

RETURNS DESCRIPTION

Model instance.

Examples:

from typing import Union

from laktory import models


class Cluster(models.BaseModel):
    name: str = None
    size: Union[int, str] = None


c = Cluster(
    name="cluster-${vars.my_cluster}",
    size="${{ 4 if vars.env == 'prod' else 2 }}",
    variables={
        "env": "dev",
    },
).inject_vars()
print(c)
# > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
References
Source code in laktory/models/basemodel.py
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def inject_vars(self, inplace: bool = False, vars: dict = None):
    """
    Inject model variables values into a model attributes.

    Parameters
    ----------
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model instance.

    Examples
    --------
    ```py
    from typing import Union

    from laktory import models


    class Cluster(models.BaseModel):
        name: str = None
        size: Union[int, str] = None


    c = Cluster(
        name="cluster-${vars.my_cluster}",
        size="${{ 4 if vars.env == 'prod' else 2 }}",
        variables={
            "env": "dev",
        },
    ).inject_vars()
    print(c)
    # > variables={'env': 'dev'} name='cluster-${vars.my_cluster}' size=2
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Fetching vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        self = self.model_copy(deep=True)

    # Inject into field values
    for k in list(self.model_fields_set):
        if k == "variables":
            continue
        o = getattr(self, k)

        if isinstance(o, BaseModel) or isinstance(o, dict) or isinstance(o, list):
            # Mutable objects will be updated in place
            _resolve_values(o, vars)
        else:
            # Simple objects must be updated explicitly
            setattr(self, k, _resolve_value(o, vars))

    # Inject into child resources
    if hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r == self:
                continue
            r.inject_vars(vars=vars, inplace=True)

    if not inplace:
        return self

inject_vars_into_dump(dump, inplace=False, vars=None) ¤

Inject model variables values into a model dump.

PARAMETER DESCRIPTION
dump

Model dump (or any other general purpose mutable object)

TYPE: dict[str, Any]

inplace

If True model is modified in place. Otherwise, a new model instance is returned.

TYPE: bool DEFAULT: False

vars

A dictionary of variables to be injected in addition to the model internal variables.

TYPE: dict[str, Any] DEFAULT: None

RETURNS DESCRIPTION

Model dump with injected variables.

Examples:

from laktory import models

m = models.BaseModel(
    variables={
        "env": "dev",
    },
)
data = {
    "name": "cluster-${vars.my_cluster}",
    "size": "${{ 4 if vars.env == 'prod' else 2 }}",
}
print(m.inject_vars_into_dump(data))
# > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
References
Source code in laktory/models/basemodel.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
def inject_vars_into_dump(
    self, dump: dict[str, Any], inplace: bool = False, vars: dict[str, Any] = None
):
    """
    Inject model variables values into a model dump.

    Parameters
    ----------
    dump:
        Model dump (or any other general purpose mutable object)
    inplace:
        If `True` model is modified in place. Otherwise, a new model
        instance is returned.
    vars:
        A dictionary of variables to be injected in addition to the
        model internal variables.


    Returns
    -------
    :
        Model dump with injected variables.


    Examples
    --------
    ```py
    from laktory import models

    m = models.BaseModel(
        variables={
            "env": "dev",
        },
    )
    data = {
        "name": "cluster-${vars.my_cluster}",
        "size": "${{ 4 if vars.env == 'prod' else 2 }}",
    }
    print(m.inject_vars_into_dump(data))
    # > {'name': 'cluster-${vars.my_cluster}', 'size': 2}
    ```

    References
    ----------
    * [variables](https://www.laktory.ai/concepts/variables/)
    """

    # Setting vars
    if vars is None:
        vars = {}
    vars = deepcopy(vars)
    vars.update(self.variables)

    # Create copy
    if not inplace:
        dump = copy.deepcopy(dump)

    # Inject into field values
    _resolve_values(dump, vars)

    if not inplace:
        return dump

model_validate_json_file(fp) classmethod ¤

Load model from json file object

PARAMETER DESCRIPTION
fp

file object structured as a json file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Source code in laktory/models/basemodel.py
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
@classmethod
def model_validate_json_file(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from json file object

    Parameters
    ----------
    fp:
        file object structured as a json file

    Returns
    -------
    :
        Model instance
    """
    data = json.load(fp)
    return cls.model_validate(data)

model_validate_yaml(fp) classmethod ¤

Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports reference to external yaml and sql files using !use, !extend and !update tags. Path to external files can be defined using model or environment variables.

Referenced path should always be relative to the file they are referenced from.

Custom Tags
  • !use {filepath}: Directly inject the content of the file at filepath

  • - !extend {filepath}: Extend the current list with the elements found in the file at filepath. Similar to python list.extend method.

  • <<: !update {filepath}: Merge the current dictionary with the content of the dictionary defined at filepath. Similar to python dict.update method.

PARAMETER DESCRIPTION
fp

file object structured as a yaml file

TYPE: TextIO

RETURNS DESCRIPTION
Model

Model instance

Examples:

businesses:
  apple:
    symbol: aapl
    address: !use addresses.yaml
    <<: !update common.yaml
    emails:
      - jane.doe@apple.com
      - extend! emails.yaml
  amazon:
    symbol: amzn
    address: !use addresses.yaml
    <<: update! common.yaml
    emails:
      - john.doe@amazon.com
      - extend! emails.yaml
Source code in laktory/models/basemodel.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
@classmethod
def model_validate_yaml(cls: Type[Model], fp: TextIO) -> Model:
    """
    Load model from yaml file object using laktory.yaml.RecursiveLoader. Supports
    reference to external yaml and sql files using `!use`, `!extend` and `!update` tags.
    Path to external files can be defined using model or environment variables.

    Referenced path should always be relative to the file they are referenced from.

    Custom Tags
    -----------
    - `!use {filepath}`:
        Directly inject the content of the file at `filepath`

    - `- !extend {filepath}`:
        Extend the current list with the elements found in the file at `filepath`.
        Similar to python list.extend method.

    - `<<: !update {filepath}`:
        Merge the current dictionary with the content of the dictionary defined at
        `filepath`. Similar to python dict.update method.

    Parameters
    ----------
    fp:
        file object structured as a yaml file

    Returns
    -------
    :
        Model instance

    Examples
    --------
    ```yaml
    businesses:
      apple:
        symbol: aapl
        address: !use addresses.yaml
        <<: !update common.yaml
        emails:
          - jane.doe@apple.com
          - extend! emails.yaml
      amazon:
        symbol: amzn
        address: !use addresses.yaml
        <<: update! common.yaml
        emails:
          - john.doe@amazon.com
          - extend! emails.yaml
    ```
    """

    data = RecursiveLoader.load(fp)
    return cls.model_validate(data)

push_vars(update_core_resources=False) ¤

Push variable values to all child recursively

Source code in laktory/models/basemodel.py
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
def push_vars(self, update_core_resources=False) -> Any:
    """Push variable values to all child recursively"""

    def _update_model(m):
        if not isinstance(m, BaseModel):
            return
        for k, v in self.variables.items():
            m.variables[k] = m.variables.get(k, v)
        m.push_vars()

    def _push_vars(o):
        if isinstance(o, list):
            for _o in o:
                _push_vars(_o)
        elif isinstance(o, dict):
            for _o in o.values():
                _push_vars(_o)
        else:
            _update_model(o)

    for k in self.model_fields.keys():
        _push_vars(getattr(self, k))

    if update_core_resources and hasattr(self, "core_resources"):
        for r in self.core_resources:
            if r != self:
                _push_vars(r)

    return None

validate_assignment_disabled() ¤

Updating a model attribute inside a model validator when validate_assignment is True causes an infinite recursion by design and must be turned off temporarily.

Source code in laktory/models/basemodel.py
323
324
325
326
327
328
329
330
331
332
333
334
335
@contextmanager
def validate_assignment_disabled(self):
    """
    Updating a model attribute inside a model validator when `validate_assignment`
    is `True` causes an infinite recursion by design and must be turned off
    temporarily.
    """
    original_state = self.model_config["validate_assignment"]
    self.model_config["validate_assignment"] = False
    try:
        yield
    finally:
        self.model_config["validate_assignment"] = original_state